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Buoyancy effects in stably stratified horizontal 
boundary-layer flow 
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(Received 7 March 1992 and in revised form 7 October 1992) 

This paper describes numerical and asymptotic solutions of the steady two-dimensional 
boundary-layer equations governing buoyant flow on a horizontal, thermally insulated 
surface. The class of flows considered is one for which there is a uniform external 
stream at constant temperature but for which conditions upstream lead to a statically 
stable temperature field within the boundary layer. This has the effect of generating an 
adverse pressure gradient which, if sufficiently strong, causes the boundary-layer 
solution to terminate in a singularity. Results are obtained for a range of Prandtl 
numbers. 

1. Introduction 
There is a substantial body of work on buoyancy effects in boundary-layer flow. 

Pohlhausen (1921) proposed the similarity solution for natural convection from a 
heated vertical plate, and numerical solutions of the governing equations were first 
obtained by Ostrach (1952). Vertical boundary-layer flows generated by an external 
stream but for which buoyancy acts to oppose the motion were considered by Merkin 
(1969) who obtained numerical solutions of the governing partial differeiitial equations 
and showed how such flows could terminate in a point of separation similar to that 
associated with a Goldstein (1948) singularity. Buckmaster (1970) and Hunt & Wilks 
(1980) considered the precise nature of the singularity at separation for isothermal and 
constant-heat-flux conditions at the wall and further numerical solutions of the 
boundary-layer equations near separation were also obtained. 

Buoyancy effects in horizontal boundary layers appear to have received little 
attention until the work of Stewartson (1958) who considered natural convection from 
an isothermal semi-infinite horizontal plate. His results as interpreted by Gill, Zeh & 
del Casal(l965) established the existence of a similarity solution only for the boundary 
layer above a heated surface or below a cooled surface, a statically unstable 
temperature field being necessary to produce a favourable pressure gradient to drive 
the flow. Theoretical work on the statically stable situation has been carried out using 
an integral analysis by Clifton & Chapman (1969) while Jones (1973) and Pera & 
Gebhart (1973) have considered the effect of a small inclination of the plate. Effects of 
mass transfer from the plate have been considered by Bandrowski & Rybski (1976, see 
Kerr 1980) and non-Boussinesq effects by Ackroyd (1976). Experimental work on 
horizontal boundary-layer flow has been reported by Rotem & Claassen (1969), 
Goldstein, Sparrow & Jones (1973), Al-Arabi and El-Riedy (1976), Faw & Dullforce 
(1981) and Goldstein & Lau (1983). 

For a horizontal boundary layer in which the temperature field is statically stable 
buoyancy generates an adverse pressure gradient and the flow will break down unless 
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it is carried forward by the action of an external stream. The balance between these two 
competing effects is measured by the Froude number of the flow. The aim of the 
present work is to formulate and solve a model boundary-layer problem for a range of 
Froude numbers in order to examine the different types of flow that can occur and also 
ways in which the flow may terminate. In a horizontal buoyancy layer the streamwise 
pressure gradient varies with depth in the layer and although it is predetermined at the 
edge of the boundary layer it must otherwise be found as part of the solution process, 
along with both the temperature and velocity fields. This is different from the situation 
in a vertical layer where the pressure field is completely predetermined; as a result it is 
by no means clear that for the horizontal configuration separation can occur in the 
manner associated with a Goldstein singularity. 

The buoyancy-layer problem is formulated in $2 and for a specified class of initial 
profiles is shown to involve two parameters, the Prandtl number of the fluid, g, and a 
second parameter, a, associated with the Froude number of the flow and based on the 
external flow speed and the heat flux carried by the layer. The initial profiles are chosen 
to correspond to a non-buoyant wall jet of the type first analysed by Glauert (1956) and 
for which the corresponding temperature field has been obtained recently by Daniels 
& Gargaro (1992). This ensures a stable stratification and has the added advantage of 
providing an initial structure relevant to the intrusion jets observed in certain thermally 
driven shallow cavity flows. A discussion of this particular application of the work is 
given in $6. Asymptotic solutions of the horizontal buoyancy-layer system for small 
and large values of the downstream coordinate are described in $ 3  and are used as a 
basis for the construction of a finite-difference numerical scheme in $4. Results of the 
numerical calculations are described in $ 5  and a summary of the main conclusions is 
given in $6. 

2. Formulation 
Two-dimensional motion in a fluid of mean density p ,  kinematic viscosity v, thermal 

diffusivity K and coefficient of thermal expansion a* is set up by velocity and 
temperature profiles of vertical scale z* - h along an insulated horizontal wall which 
coincides with the x*-axis. Away from the wall the flow has constant speed U,* in the 
x*-direction and constant temperature T:. In the Boussinesq approximation the 
governing equations for steady flow are 

aa aw -+-= = 0, ax aZ 

where the velocity components a, w are made non-dimensional by v/h,  

(x*, z*) = h(x, 
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and the pressure and temperature fields are given by 

P" = -pg*z* + (&h2)p(x, T), 

T* = T,* + T,* T(x, 3, 
where g* is the acceleration due to gravity which acts in the negative z*-direction. The 
two parameters appearing in (2.3) and (2.4) are the Rayleigh number and Prandtl 
number defined by 

respectively. 

which 

R = a*g*T,* h 3 / ~ v ,  u = V / K ,  (2.7) 

In the limit of large Rayleigh number the motion assumes a boundary-layer form in 

T =  T(x,z)+ ..., ~ = R P ( x , z ) +  ..., ~ C = ~ U ( X , Z ) +  ..., W = W ( X , Z ) +  ..., (2.8) 

where x = &x and Z= z. Assuming that 

U,* = RiUv/h (R l), 

the boundary-layer problem is to solve 

subject to 

(2.10) 

(2.11) 

0 = --+G--'T, aP (2.12) aZ 

(2.13) 

(2.14) 

(2.15) 

and u + U as z ii co. A stream function ?,b is introduced such that 

u = a@/az, w = -a?,b/ax. (2.16) 

Initial profiles for T and u are taken to correspond to a non-buoyant wall jet of the 
type first analysed by Glauert (1956) and characterized by its flux of exterior 
momentum flux 1: u ( Izm u2 dz) dz = P, (2.17) 

and its heat flux 1: @:dz = Q. (2.18) 

The parameters P and Q may in fact be scaled out of the buoyancy-layer problem by 
means of the transformations 

1 (2.19) x + PQ-b, z + $ ~ - b ,  T+ P - ~ Q ~ T ,  

$ + $Q-+@, u + Q h ,  w + P-iQiw, p + Q$, J 
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in which case the governing system is as stated in (2.10)-(2.15) and in addition 
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u-t  U / @  = 01 (z+ a). (2.20) 

The initial jet profile is given by 

@ - d$,(p), T - x-h,(p) (2.21) 

as x+O, where ,u = z /x i .  Here 4, satisfies 

4; +&b0 4; + @h2 = 0, (2.22) 
q5,=(b;=o h = O ) ,  $;-to (p-zco), (2.23) 

and from (2.17) is uniquely defined by the condition 

while 8, satisfies e; + :.-($; 8, + e;) = 0, 
s;=o & = O ) ,  @,-to &+-a) 

and is uniquely defined by the condition 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

Since the wall z = 0 is thermally insulated and no heat can escape at the edge of the 
buoyancy layer, integration of the energy equation (2.13) shows that the heat flux in 
the layer is conserved and is therefore given by the initial value (2.27). Thus 

J:@Edz = 1, (2.28) 

for all values of x. 
The buoyancy-layer problem is seen to depend on two parameters, the Prandtl 

number .- and the scaled external flow speed a. In fact a; = U;/@ is associated with 
the Froude number of the flow (see 96) and is a measure of the size of the forward 
momentum produced by the external flow relative to the adverse pressure gradient 
induced by buoyancy. 

3. Asymptotic solutions 
As the buoyancy-layer flow proceeds downstream the wall jet (2.21) is modified 

firstly by the presence of the external stream and secondly by the adverse pressure 
gradient induced by buoyancy. These effects can be seen in an asymptotic expansion 
of the solution for small values of x, which proceeds initially in powers of xi: 

(3.1) 
(3.2) 
(3.3) 

@ = x+bool.) + x$751(u) + x"&) + X+&(p) + . . .) 
T = x-%',(u) + x%,(u) + x%,(p) + x%,(u) + . . . , 

p = x$,(u)+ ... . 
Here ,u = z/xs  and the leading terms which satisfy (2.22)-(2.27) are given by 

$, = (40)k2, (3-4) 

where d 3 @  + 2/3  tan-' __ 
1-@ 2 + @  

(1 + @+ @Z)i i(4O)ip = In (3.5) 
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& 
FIGURE 1. The function &,. 

(Glauert 1956) and 8, = - a,( 1 - (3.6) 
where a, = r(r+ $)/{I'(g) r($) a(40)iI (3.7) 
(Daniels & Gargaro 1992). 

satisfies 
At first order substitution of (3.1), (3.2) into (2.11)-(2.15), (2.20) shows that 

(3.8) 
$ l = $ ; = o  & = O ) ,  $;+a &+m), (3.9) 

$Y+L$  $y+'$"'+""$ - 0, 
4 0 1  2 0 1  4 0  1 -  

and 8, satisfies 8;' + ;.-($, e; - $;, 8,) = -;43$, e;, + $; e,), (3.10) 

e; = o = 01, e,+o &+a). (3.11) 

Similarly, at second order it is found that 

$E'+'$ 4 0  $"+""$ 2 4 0  2 - - a 1  - 3$ 0'' 1 ,  (3.12) 
$d2=$;=0 & = O ) ,  $;+o &+m), (3.13) 

e; - 3$; e,) = ;g($; el - 341 e; - 4; eo - 54, oh), (3.14) 

0;; = o  (LL = O), 0,+0 &+m). (3.15) 

At third order the pressure gradient induced by buoyancy comes into play and $3 and 
8, are found to satisfy 

and 0; + 

$:+I$ $"-L+'$'+f$i$3 =&o-&i+I$'$'-3# $"-g$3$2, (3.16) 
4 0 3  2 0 3  2 1  2 4 1  2 

$ , = $ k = O  & = O ) ,  $ i + O  &+a), (3.17) 
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where 

-4  -2  

00 
FIGURE 2. The function 0, for Prandtl numbers (a) 0.1, (b) 0.72, (c) 8.1, (d )  17.2. 

(3.18) 

and 0; ++a($o 19; - 5$; 8,) = +.-(3$; 8, - 341 6; + 4; 8, - 5$2 0; - 4; Bo - 74, e;), (3.19) 

0; = 0 (p = O), e,+o &+a). (3.20) 

Solutions for $i and Si (i = 1,2,3) are found for general values of a by writing 

(3.21) 

and then the relevant systems for di, gi and A, g, are independent of a ;  the systems for 
6i (i = 1,2,3) are also independent of the Prandtl number a. Numerical solutions were 
obtained using a fourth-order Runge-Kutta scheme and results are displayed in figures 
1-3. At the edge of the layer 

61 P + a",, $2 +a",, 6 3  -+ a",, $53 + a3(4 0. + a), (3.22) 

I $1 = $2 = a 2 4 2 ,  #3 = a", + $3, 
el = a&, e, = a,&,, e, = a38,+8,, 

and from the numerical solutions a", = -6.92, a", = 14.9, a", = - 139 and 

a3(0.72) = - 17.6, a3(8.1) = -0.01. 

The results indicate that at small values of x the external stream is of primary 
significance in modifying the jet flow, and enhances its forward velocity of order x-4 by 
a finite amount. Buoyancy induces a weaker flow of order x which is associated with 
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FIGURE 3. The function & for Prandtl numbers (a) 0.72, (b) 8.1. 

the adverse prcssure gradient implied by (3.18) and which is in the upstream direction 
near the wall (figure 3). In the absence of external flow (a = 0) this becomes the major 
influence on the developing jet and figure 4 gives an impression of the flow development 
for air predicted by evaluating the expansion (3.1) at finite values of x. Reverse flow 
first sets in near the edge of the layer and subsequently near the wall. 

If the motion is sustained to large values of x it is expected to consist of an externally 
driven flow modified by buoyancy associated with the temperature field as it relaxes to 
the uniform value T = 0. This suggests an asymptotic form similar to that for a Blasius 
boundary layer as discussed by Schneider (1979) in which 

1c. - xY(9), T - x - $ m  P - d 9 )  ( x - t  a), (3.23) 

where 9 = z/x i  and the temperature dependence is dictated by the heat-flux requirement 
(2.28). Substitution of (3.23) into (2.1 lb(2.13) yields 

f”’+kff” = -1 294’3 (3.24) 
q‘ = a-lg, (3.25) 

(3.26) g” +;rug’ +f’g) = 0, 
and from (2.14), (2.15) and (2.20) the boundary conditions are 

(3.27) 
(3.28) 

Thus (3.29) 
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U 

FIGURE 4. u - x"&, +x& as a function of z for increasing values of x and u = 0.72. 

and integration of (3.26) gives 

(3.30) 

where 52 is a constant. Substitution into (3.24) and use of the transformation 

f = Gkf(r"), 7 = a-ir", (3.31) 

then gives a single equation forf 

(3.32) 

where the right-hand side represents the adverse pressure gradient induced by 
buoyancy. This equation must be solved subject to 

f = f  = o  ( r " = O ) ,  p+12 (r"+co), (3.33) 

where 12 = 52-3,. (3.34) 

The integral constraint (2.28) requires that 

and so gives 

(3.35) 

(3.36) 
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FIGURE 5. The parameter a as a function of y for Prandtl numbers 

(a) 0.1, (b) 0.72, (c) 1.0, (d) 8.1, (e) 17.2. 
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B U 4 0 )  -(y-&+j)m 
0.3817 2.683 2.079 10.53 
0.4092 2.325 1.747 6.499 
0.3910 2.333 1.448 5.1 16 
0.3688 2.476 1.239 4.594 
0.3493 2.665 1.091 4.399 
0.3330 2.869 0.98 1 4.347 
0.3193 3.075 0.896 4.364 
0.3076 3.280 0.829 4.417 
0.2976 3.479 0.773 4.489 
0.2889 3.673 0.727 4.571 
0.2812 3.862 0.688 4.658 
0.2743 4.046 0.654 4.748 
0.2681 4.224 0.624 4.839 
0.2338 5.502 0.473 5.519 
0.2092 6.842 0.378 6.225 
0.1933 8.004 0.323 6.811 
0.1818 9.047 0.285 7.315 
0.1728 10.003 0.258 7.760 

TABLE 1. Properties of the large-x asymptote for CT = 0.72 

where (3.37) 

Solutions of (3.32) were computed by specifying y =p(O) and integrating outwards by 
a fourth-order Runge-Kutta scheme to obtain d =p(co). Then a may be calculated 
retroactively from (3.34) and (3.36) as 

a = &I-+. (3.38) 
Computations of a as a function of y for a range of Prandtl numbers are shown in 
figure 5.  This shows that such solutions only exist for values of a in the range a > a,(a) 
and that for a given a in this range there are dual solutions forf Some of these 
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solutions exhibit reverse flow near the wall. Table 1 gives values of 52 and 01 for various 
values of y, as well as the quantities q(0) and ( f -&f )m which are needed in order to 
determine the wall pressure and displacement thickness of the boundary layer (see 
(5.2), (5.9) below). 

Further terms in the asymptotic forms (3.23) have not been considered in detail 
although there are certainly terms of relative order x-l equivalent to a shift in origin 
of the expansion. 

4. Numerical solution 
Full numerical solutions of the buoyancy-layer system (2.10 j(2.15) and (2.20) were 

obtained using a finite-difference scheme. The system is parabolic and solutions were 
computed by a downstream marching procedure, using Newton iteration to solve the 
discretized form of the nonlinear equations at each x-station. In view of the initial 
development outlined in $3,  in x < 1 the equations were discretized onto a mesh which 
conformed with the asymptotic structure as x+O. Thus the solution is written as 

$ = 5 4 5 ,  PI, P = g-'E2D(5, p), T = t-lE(5, p), (4.1) 

where 5 = xi, p = z/x:, (4.2) 

giving equations which may be expressed in first-order form as 

with 

The boundary conditions are 

(4.5) 

and the initial profiles are 

A =$,, B =  $;, c= $5, D = ~ ~ , ,  E =  e,, F =  e; g = o ) .  (4.8) 

The equations and boundary conditions are discretized using central differences and 
uniform steps A( and Ap. Details of the resulting matrix equation for the Newton 
increments at each downstream step are given by Gargaro (1991); the solution at the 
previous step is used to provide an initial guess and convergence is required to within 
a specified tolerance. 

At x = 1 a switch is made to a uniform mesh in 

x = xi7 9 = Z/X.t, (4.9) 

with $ = XA"(X, v), p = g-'b(X, r), T = X-'E(X, T) ,  (4.10) 

which ensures that the widening layer is adequately resolved in the numerical scheme 
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E A6 = 0.02, A p  = 0.1 A6 = 0.02, Ap = 0.2 
0.2 1.0017 1.0017 
0.4 1.0014 1.0005 
0.6 1.0010 0.9991 
0.8 1.0006 0.9975 
1 .o 0.9998 0.9948 

TABLE 2. Values of the conserved integral (2.28) for u = 0.72, cc = 10 and different step sizes 

at large values of x, in line with the asymptotic form (3.23). For x > 1 the system of 
first-order equations 

(4.11) 

(4.12) 

(4.13) 

must be solved subject to the boundary conditions - - -  
A = B = F = O  (y=O) ,  (4.14) 

L o ,  J b o ,  L a  (q+co). (4.15) 

At the changeover point x = 6 = X = 1 the initial profiles for A, 8, . . . are simply given 
by A ,  B, . . . . The system is discretized onto a uniform mesh in X and 7 and Newton 
iteration again used to obtain the solution at each downstream step. Details are given 
by Gargaro (1991). 

Most computations were performed with step sizes Ap = A7 = 0.1 and 
A( = AX = 0.02 and with 500 steps across the layer. The tolerance for which the 
Newton increments were considered small enough was usually taken as Various 
checks on accuracy were carried out by using different step sizes and also by computing 
the conserved integral (2.28) at each downstream step; some of the results are 
summarized in table 2. 

5. Numerical results 
The range of a considered was from 0 to 10 and most results were obtained for 

c = 0.72 (air) and r = 8.1 (water). At sufficiently low values of a the numerical solution 
terminated either because of the onset of reverse flow or because a singularity was 
reached at a finite value of x. Reverse-flow breakdown occurred for u = 0.72 and 
01 = 0. The asymptotic theory of 0 3 suggested that reverse flow might first occur towards 
the edge of the layer and this was indeed the case, leading to the failure of the numerical 
computation just beyond l =  0.32. 

Breakdown in the form of a singularity was observed for higher values of 01. The case 
investigated in detail was a = 1, r = 0.72. The flow appeared to be developing in a 
regular manner, but broke down quickly as the singularity was approached at 
5 z 0.5336. Near to the singularity the pressure gradient became favourable and the skin 
friction increased rapidly. The same type of singularity occurred for u = 0.72 and 
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FIGURE 6. Velocity profiles for u = 0.72, a = 3.5 and 6 = 0.4, 0.6, 0.8, 1 .O. 
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- 1.5 

T 
FIGURE 7. Temperature profiles for u = 0.72, OL = 3.5 and [ = 0.4, 0.6, 0.8, 1 .O. 

a = 2,3  and 3.5, the terminal point of the boundary layer extending further downstream 
as a increased. For a = 3.5 the singularity occurred between x = 10 and 10.5. When the 
value of a was raised to 4 or more the flow was able to develop fully downstream to 
the asymptote associated with the right-hand branch of figure 5.  Typical graphs of 
velocity, temperature and pressure are shown in figures 6, 7 and 8. 

At higher Prandtl number (CT = 8.1) the terminal singularity was confined to a 
smaller range of a and for a = 3 the flow was able to develop all the way along the 



Buoyancy esfects in stably stratged boundary-layer $ow 245 

0.4 0.8 
P 

FIGURE 8. Pressure profiles for u = 0.72, CL = 3.5 and g = 0.4, 0.6, 0.8, 1 .o. 

1 2 3 
U 

 FIGURE^. Velocityprofilesforr=8.1,a=3andX=1.2,  1.4, 1.6, 1.8,2.0. 

boundary layer. Graphs of velocity and temperature in figures 9 and 10 illustrate the 
evolution of the jet into the new flow structure in which buoyancy and the forcing 
external velocity are in balance. 

The downstream development of the buoyancy layer for the case of air is 
summarized in figures 11-14. Figure 11 shows the wall pressure plotted against 6 for 
various a, for which the asymptotic behaviour predicted in $ 3  is 

p(x ,  0) - xia, r(+) T(U)/{(TT($ + (r)> (x --f 01, (5.1) 

P ( X ,  0)  + do)  (x + 00). (5.2) 
The cases a = 4 and 10 which develop all the way along the boundary layer do 
approach the relevant asymptotes and even those cases which terminate but for which 
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FIGURE 10. Temperature profiles for (T = 8.1, a = 3 and X =  1.2, 1.4, 1.6, 1.8, 2.0. 

0.5 1 .o 1.5 

FIGURE 11. Wall pressure for CT = 0.72 and various values of a. Dashed curves 
show the asymptotes (5.1), (5.2). 

a > aJO.72) x 2.3 actually appear to approach their large-x asymptotes prior to 
termination. Detailed computations were carried out close to the singularity for the 
two cases a = 1 and 2 to reveal the local behaviour shown in figure 11. 

Asymptotic forms for the skin friction and wall temperature at small and large 
values of x are 
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6 
FIGURE 12. Skin friction for (r = 0.72 and various values of a. Dashed curves 

show the asymptotes (5.3), (5.4). 

and these are included in figures 12 and 13. The cases 01 = 1 and 2 indicate that the skin 
friction increases without bound as the singularity is approached while the wall 
temperature is relatively little affected. 

The displacement d(x) is defined by the outer behaviour 

@ - 01z - d(x) (Z  + a), (5.7) 

d(x) - - xi(40); ( X  + 0), (5.8) 
(5.9) 

and is shown in figure 14. Its asymptotes for small and large values of x are 

1 1 -  

d(x) - - x%2qf- .TIrn - - fx-rw), 

and again there is good agreement with the computations. For a = 1 and 2 the 
displacement turns sharply downwards as the singularity is approached, indicating that 
fluid is being brought back down into the boundary layer. 

Quantitative comparisons of the computations with the complete small-x expansions 
of $3 were found to be satisfactory and details are given by Gargaro (1991). It should 
be noted that the asymptotic expansions require both xi and ax: to be small compared 
with unity and the latter condition implies an increasingly severe limitation on the 
range of x for validity of the expansion at high values of a. 
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6 
0.5 1 .o 1.5 

FIGURE 13. Wall temperature for g = 0.72 and various values of a. Dashed curves 
show the asymptotes ( 5 . 9 ,  (5.6). 

FIGURE 14. Displacement for CT = 0.72 and various values of a. Dashed curves 
show the asymptotes (5.8), (5.9). 
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6. Summary and discussion 
A model boundary-layer problem in which buoyancy plays a significant role has 

been formulated for flow along a horizontal, thermally insulated wall. For the situation 
in which the boundary layer is initiated by a non-buoyant wall jet the solution is 
dependent on only two parameters, the Prandtl number of the fluid cr and a, as defined 
by (2.20). A useful interpretation of the parameter a is obtained by considering the 
Froude number of the flow. A local Froude number in the boundary layer is based on 
the ratio of inertia to buoyancy 

u*/{ol*g*(T,* - P) z*}i, (6.1) 
where u* is the streamwise velocity in the boundary layer. It is readily established from 
(3.1), (3.2) that this is large (of order x-i) in the jet flow upstream, where inertia is 
dominant. As the jet diffuses, buoyancy comes into play and the local Froude number 
decreases. A global Froude number, on the other hand, can be defined in terms of the 
external flow U,* as 

Fr = U,*i/{ a*g* lom u*(T,* - T*) dr*r ,  (6.2) 

and this is directly related to the parameter a by the formula 

(6.3) 
1 s  Fr = crW. 

In cases where the Froude number is too low the boundary-layer flow cannot be 
sustained and the forward motion succumbs to the adverse pressure gradient induced 
by buoyancy. This either leads to the onset of reverse flow and the consequent failure 
of the numerical scheme or more generally to the occurrence of a terminal singularity. 
In cases where reverse flow sets in, the computations failed due to numerical instability 
rather than the existence of any local singular behaviour. The flow becomes subject to 
upstream influence which requires a much more sophisticated numerical treatment 
beyond the scope of the present work. In the case of the terminal singularity, the local 
Froude number in the boundary layer reaches a critically low level from which the flow 
is unable to recover on the boundary-layer lengthscale. Locally however the singularity 
is characterized by an apparent recovery, with a rapidly increasing skin friction and a 
favourable pressure gradient. Computations very close to the singularity revealed the 
development of an intricate and clearly defined structure in which the streamwise 
pressure gradient, skin friction and streamwise temperature gradient all become 
infinitely large as x approaches a finite station within the boundary layer. The 
boundary-layer solution cannot proceed at this point. A local analysis which takes into 
account streamwise gradients not included in the boundary-layer model is required to 
determine whether the singularity heralds a complete breakdown of the theory, 
analogous to that of the Goldstein (1948) singularity in classical pressure-driven 
boundary layers, or whether the upstream flow can be matched via a local adjustment 
to a consistent solution downstream. A detailed analysis of the structure of the 
singularity and a discussion of its possible relevance to the occurrence of internal 
hydraulic jumps (Turner 1973; Ivey 1984) is given elsewhere (Daniels 1992). None of 
the computations revealed any kind of flow separation from the wall or a singularity 
of the type associated with a Goldstein structure although the possibility of other 
terminal behaviour for more general initial configurations should not be ruled out and 
has been observed, for example, by Schneider & Wasel (1985). 

In general the computations ended in the terminal singularity for a wider range of 
values of a than the range a < ac(cr) associated with non-existence of an asymptotic 
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solution at large values of x. Thus for example in the case of air, the singularity 
occurred for values of a as high as 3.5 whereas the critical value predicted in $3 is 
aJO.72) w 2.3. For those solutions which do attain the large-x asymptotic form, in 
which a balance is achieved between the external driving force and buoyancy, there was 
found to be excellent agreement between the numerical computations and the 
asymptotic predictions of $3. As the boundary layer proceeds downstream, isotherms 
stemming from the jet flow at x = 0 attach to the wall and the temperature of the wall 
rises to the ambient temperature of the external flow. 

The present work was partially motivated by the desire to understand the properties 
of horizontal boundary layers in thermal cavity flows. Such flows, driven for example 
by maintaining the vertical walls of a cavity at different temperatures, exhibit jet-like 
behaviour in regions at the bottom of the cold wall (and the top of the hot wall) where 
fluid descending (or ascending) in a vertical boundary layer issues into the core. These 
intrusion jets (Bejan, Al-Homoud & Imberger 1981 ; Simpkins & Chen 1986) are stably 
stratified and in certain flow regimes may also be modified by a recirculating core flow 
equivalent to the uniform external stream incorporated here. Such a structure has been 
proposed by Daniels (1993) in connection with thermally driven flow in shallow 
cavities and the present work is an investigation of the second stage of evolution of the 
relevant horizontal boundary-layer structure. The first stage consists of a non-buoyant 
wall jet and has been discussed by Daniels & Gargaro (1992). The consistency of the 
horizontal layers is an important ingredient in verifying the overall consistency of the 
high Rayleigh number flow structure in the cavity, as this is primarily dependent on 
the requirement that heat flux is conveyed from the hot wall to the cold wall via the 
horizontal boundary layers. The present study indicates that the local Froude number 
of the flow is a crucial factor in determining whether a self-contained horizontal 
boundary-layer flow is feasible. 

R.J.G. would like to thank the Science and Engineering Research Council for 
support in the form of a research studentship. 
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